Biopolym. Cell. 2025; 41(4):300.
Bioorganic Chemistry
Evaluation of the monomethine cyanine dye FB128 for real-time PCR applications
- Institute of Molecular Biology and Genetics, NAS of Ukraine
150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143 - Kyiv Institute of the National Guard of Ukraine, MIA of Ukraine
7, Oborony Kyieva Str., Kyiv, Ukraine, 03179
Abstract
Aim. To evaluate the suitability of the novel DNA-binding dye fb128 for real-time PCR applications, including amplification efficiency, fluorescence performance, PCR inhibition threshold, and melting curve analysis. Methods. UV-vis absorption and fluorescence spectroscopy, agarose gel electrophoresis, real-time PCR, melt curve analysis. Results. fb128 exhibited low intrinsic fluorescence and strong DNA-specific signal (ΔQ = 160.7). Optimal concentrations (0.2—1.6 μM) provided early Ct values without PCR inhibition, whereas the concentrations of ≥3 μM caused a delayin amplification or complete suppression. PCR efficiency with fb128 was 102.6%, within the optimal range for quantitative applications. Melting peaks with fb128 were stronger and appeared at 74.5 °C, 2.5 °C lower than with SYBR Green I, suggesting weaker dsDNA binding. Conclusions. fb128 demonstrates high amplification efficiency, strong fluorescent signal, broad concentration tolerance, and robust melting analysis performance. These properties establish fb128 as a competitive alternative to SYBR Green I for real-time PCR applications.
Keywords: monomethine cyanine dye, fluorescence intensity, real-time PCR, DNA binding, PCR efficiency, melt curve analysis
Full text: (PDF, in English)
References
[1]
Bermingham N, Luettich K. Polymerase chain reaction and its applications. Current Diagnostic Pathology. 2003; 9(3):159-64.
[2]
Maksymchuk O, Gerashchenko G, Rosohatska I, Kononenko O, Tymoshenko A, Stakhovsky E, Kashuba V. Cytochrome P450 genes expression in human prostate cancer. Mol Genet Metab Rep. 2024; 38:101049.
[3]
Sun L, Wang L, Zhang C, Xiao Y, Zhang L, Zhao Z, Ren L, Peng J. Rapid Detection of Predominant SARS-CoV-2 Variants Using Multiplex High-Resolution Melting Analysis. Microbiol Spectr. 2023; 11(3):e0005523.
[4]
Karelov AV, Borzykh OI, Kozub NO, Sozinov IO, Yanse LA, Sozinova OI, Tkalenko HM, Mishchenko LT, Blume YaB. Current Ap-proaches to Identification of Fusarium Fungi Infecting Wheat. Cytol Genet. 2021; 55:433-46.
[5]
Navarro E, Serrano-Heras G, Castaño MJ, Solera J. Real-time PCR detection chemistry. Clin Chim Acta. 2015; 439:231-50.
[6]
Josefsen MH, Löfström C, Sommer HM, Hoorfar J. Diagnostic PCR: comparative sensitivity of four probe chemistries. Mol Cell Probes. 2009; 23(3-4):201-3.
[7]
Arikawa E, Sun Y, Wang J, Zhou Q, Ning B, Dial SL, Guo L, Yang J. Cross-platform comparison of SYBR Green real-time PCR with TaqMan PCR, microarrays and other gene expression measurement technologies evaluated in the MicroArray Quality Control (MAQC) study. BMC Genomics. 2008; 9:328.
[8]
Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques. 1998; 24(6):954-62.
[9]
Bengtsson M, Karlsson HJ, Westman G, Kubista M. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR. Nucleic Acids Res. 2003; 31(8):e45.
[10]
Gudnason H, Dufva M, Bang DD, Wolff A. Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic Acids Res. 2007; 35(19):e127.
[11]
Mao F, Leung WY, Xin X. Characterization of EvaGreen and the implication of its physicochemical properties for qPCR applications. BMC Biotechnol. 2007; 7:76.
[12]
Kulyk O, Krivoshey A, Kolosova O, Prylutska I, Vasiliu T, Puf R, Mocci F, Laaksonen A, Perepelytsya S, Kobzev D, Svoiakov R, Tkachuk Z, Tatarets A. Nucleic acid-binding bis-acridine orange dyes with improved properties for bioimaging and PCR applications. J Mater Chem B. 2024; 12(46):11968-82.
[13]
Eischeid AC. SYTO dyes and EvaGreen outperform SYBR Green in real-time PCR. BMC Res Notes. 2011; 4:263.
[14]
Kazakov-Kravchenko OS, Balanda AO, Losytskyy MYu, Yarmoluk SM. Effect of DNA, RNA and HSA on the spectral-luminescent proper-ties of several monomethine cyanine dyes. Biopolym Cell. 2025; 41(2):121.
[15]
Soloviov O, Hryschenko N, Livshits L. Spinal muscular atrophy carrier frequency in Ukraine. Russ J Genet. 2013; 49(9):982-3.
[16]
Horáková H, Polakovičová I, Shaik GM, Eitler J, Bugajev V, Dráberová L, Dráber P. 1,2-propanediol-trehalose mixture as a potent quantitative real-time PCR enhancer. BMC Biotechnol. 2011; 11:41.
[17]
Diotallevi A, Buffi G, Barocci S, Ceccarelli M, Bencardino D, Andreoni F, Orlandi C, Ferri M, Vandini D, Menzo S, Carlotti E, Casabianca A, Magnani M, Galluzzi L. Rapid monitoring of SARS-CoV-2 variants of concern through high-resolution melt analysis. Sci Rep. 2023; 13(1):21598.
[18]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4):402-8.
[19]
Kuang J, Yan X, Genders AJ, Granata C, Bishop DJ. An overview of technical considerations when using quantitative real-time PCR analysis of gene expression in human exercise research. PLoS One. 2018; 13(5):e0196438.
[20]
Hryshchenko NV, Yurchenko AA, Karaman HS, Livshits LA. Genetic Modifiers of the Spinal Muscular Atrophy Phenotype. Cytol Genet. 2020; 54(2):130-6.
[21]
Haviaz VO, Bratyshchenko AS, Skrypnikova OS, Kariaka SV, Honcharenko AI, Todoryshyn DP, Khokhliuk OA, Rosohatska IV, Kashuba VI, Kononenko OA, Vikarchuk MV, Panasenko GV, Mankovska OS. Non-invasive biomarkers for bladder cancer: a study on lncRNAs and DNA methylation. Biopolym Cell. 2025; 41(1):52-62.
[22]
Chen S, Zhang W, Tang Z, Lu T, Wan C, Jin W, Li J. The Detection and Differentiation of Pigeon Adenovirus Types 1 and 2 via a High-Resolution Melting Curve Platform. Microorganisms. 2025; 13(6):1331.
